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This study continues the work of Forbes (1986) on periodic waves beneath an elastic 
sheet floating on the surface of an infinitely deep fluid. The solution is sought as a 
Fourier series with coefficients that are computed numerically. Waves of extremely 
large amplitude are found to exist, and results are presented for waves belonging to 
several different nonlinear solution branches, characterized by different numbers of 
inflexion points in the wave profiles. The existence of multiple solutions, conjectured 
in the previous paper (Forbes 1986), is confirmed here by direct numerical 
computation. 

1. Introduction 
This paper is concerned with the form of finite-amplitude surface waves in the 

presence of a floating elastic sheet. The work presented here represents a direct 
continuation of the study begun by Forbes (1986, referred to hereinafter as Paper 1). 
I n  this earlier work it was explained that a motivation for investigating such a 
problem was to describe the properties of waves beneath a floating ice sheet and 
references are given there to work involving ice. The results to be given in the present 
paper, however, will show that such a model is probably of only limited relevance to 
ice, although it doubtless can be applied successfully to floating sheets of different 
composition. 

The computation of surface waves of large amplitude is an important problem in 
fluid mechanics and has a long history. Many of the contributions to this problem are 
summarized in a recent review article by Schwartz & Fenton (1982). Early work, 
such as Stokes' (1880) investigation of gravity waves and Wilton's (1915) study of 
capillary-gravity waves, typically relied upon Fourier series and perturbation 
expansions to  obtain approximate solutions to the nonlinear equations describing the 
shape of periodic waves. More recently, the digital computer has been used to 
automate the process of obtaining such series solutions. Thus Schwartz (1974) 
modified Stokes' series for the pure gravity wave and computed solutions with wave 
height very close to the theoretical maximum, a t  which a cusp enclosing an angle of 
120" is formed a t  the crest. Wilton's series for the capillary-gravity wave have been 
extended by Hogan (1980, 1981). Holyer (1979) has used similar techniques to solve 
the problem of waves at  an interface, and a series solution for waves beneath an 
elastic plate was presented in Paper 1. 

Purely numerical solutions to surface-wave problems have also been undertaken. 
Schwartz & Vanden-Broeck (1979), for example, obtained accurate solutions for the 
capillary-gravity-wave problem using an integral equation formulated in an inverse 
plane in which the velocity potential and stream function were chosen as independent 
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variables. A method based on the use of Fourier series in the plane of the physical 
variables was adopted by Rienecker & Fenton (1981), and Pullin & Grimshaw (1983) 
and Grimshaw & Pullin (1986) used a combination of Fourier-series and integral- 
equation techniques to investigate the properties of extreme interfacial waves. 

In  this paper we continue the study of periodic waves beneath a floating elastic 
sheet, using a Fourier-series solution in the inverse plane of the complex potential. 
Unlike Paper 1, however, in which the Fourier coefficients were developed as 
expansions in the wave height, they are here computed directly using a 
Newton-Raphson technique. The problem formulation and numerical solution 
algorithm are described in $42 and 3.  Results are presented in $4, and represent a 
summary of about 200 separate converged numerical solutions, obtained a t  the 
expense of many tens of hours of computing time on an IBM 30833 machine. This 
is by no means an exhaustive study, but it does permit certain trends in the 
behaviour of the solution to be identified. In  Paper 1, it was found that the series- 
solution technique predicted singularities in the wave speed at quite modest values 
of the wave height, and these were interpreted as limitations of the physical model, 
perhaps indicating the need for a more complete description in which cracking of the 
elastic sheet could take place. The results in $4, however, show that this 
interpretation of the singularity predicted by the series method is incorrect ; instead, 
it now appears that  these singularities are associated with narrow regions of 
nonlinear resonance of the type described by Roberts (1981, 1983), and are indicative 
of multiple solutions. A summary in $5 concludes the paper. 

2. Formulation 
As in Paper 1, we consider periodic waves of length h and speed c moving in a fluid 

of infinite depth and density p .  An elastic sheet of thickness T ,  density p M  and 
flexural rigidity D floats on the surface of the fluid. The downward acceleration of 
gravity is g and the peak-to-trough wave height is 2A. The waves are now viewed 
from a Cartesian coordinate system having the y-axis pointing vertically upward and 
moving with the waves such that a crest is permanently positioned a t  x = 0. Relative 
to this moving reference frame, the waves are stationary and the fluid flows in the 
positive x-direction. 

The problem is now non-dimensionalized in the manner adopted by Schwartz & 
Vanden-Broeck (1979), by referring all lengths to h/2n and all velocities to (gh/27t)i. 
The elastic bending moment M of the sheet is scaled relative to the quantity 
(pMgh3)  ( S X ) - ~  and the pressure P is referred to pgA/Bn. 

Since the fluid beneath the elastic sheet is assumed to be ideal and to flow without 
rotation, it follows that a fluid-velocity potential q5 and stream function @ exist, 
satisfying the Cauchy-Riemann equations 

u=q5z=@y, v = q 5  Y =-$., (2.1) 

within the fluid. The quantities u and v are respectively the x- and y-components of 
the fluid-velocity vector. At infinite depth, 

u+pi, V + O  a s y + - m ,  (2 .2)  

where the quantity p = (27tc2) (gh)-l  is a dimensionless wave-speed parameter. I n  
these non-dimensional coordinates, the waves are of length 27t and amplitude 
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01 = 2rcA/h, and a crest is located at x = 0;  denoting the interface between the elastic 
sheet and the fluid as the line y(x), it then follows that 

y(0) - y(n) = 201. (2.3) 

; (u2+v2)+y+P = &+d,H, (2.4) 

The Bernoulli equation on the fluid surface y(x) is written 

in which d, = pM/p  is the ratio of the density of the elastic plate to the fluid density, 
and H = 2rcT/h is the dimensionless thickness of the sheet. 

The system of equations (2.1)-(2.4) is closed after specification of the pressure P. 
The classical theory of beams gives the relationship 

I n  Paper 1 we derived the expression 

relating the elastic bending moment M(x) to the vertical displacement y(x) of the 
fluid-sheet interface. The parameter K = ( 16rc4D) (p, gh4)-l is the non-dimensional 
flexural rigidity. Equation (2.6) allows for finite sheet thickness H ,  and does not 
require that the curvature of the fluid surface be small. 

It follows from (2.1) that the complex potential f = $+i$ is an analytic function 
of the variable z = x + iy within the fluid. The problem formulation is simplified by 
treating the complex potential f as the independent variable and seeking an analytic 
function z(  f )  satisfying the equations of motion, since, as pointed out by Stokes 
(1880), the unknown surface location y(x) maps simply to the streamline $ = 0 in the 
f-plane. As suggested by Schwartz & Vanden-Broeck (1979), each complete wave 
cycle in the f-plane is now further mapped into a <-plane by the conformal 
transformation 

f = i d  In {, 

and the new variable { is written < = rei8. I n  the {-plane, each wave now occupies the 
disk 0 < r < 1, --n < 0 < rc,  with the circle r = 1 corresponding to the fluid 
surface. 

In  the {-plane, the nonlinear equations (2.3)-(2.6) describing the surface shape 
transform to 

y(1 ,0) -y(1 ,~)  = 201 ( 2 . 7 )  

and 
1 

& ( m - l ) + y + P  = d,H on r = 1, 

where the pressure is given by 
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and the elastic bending moment is found from 

M =  K(x ,  Yo, - Y I3 xo* 1 o n r =  1 .  (2.10) 
(X~+Y~)t+~(x,Y,,-Ysx,o) 

The solution thus consists of finding a function z ( [ )  which is analytic in the disk 
0 < r < 1 and satisfies conditions (2.7)-(2.10) on the boundary r = 1. The wave-speed 
parameter p is also unknown and is therefore to be determined. 

3. The numerical solution 

the Fourier-series representation 
Solutions of period 2n: are sought to the nonlinear equations of motion in $2 using 

in which the coefficients A j ,  j = 0, 1 ,2 ,  . .. are all real, as in Paper 1. Equation (3.1) 
satisfies the fluid equations (2.1) and the condition (2.2) a t  infinite depth, and it 
therefore remains to choose the coefficients A j ,  j = 0, 1,2,  ... and the wave-speed 
parameter p so as to  satisfy the surface conditions (2.7)-(2.10). 

We introduce Q evenly spaced numerical grid points B,, O, ,  .. ., 6,  at the fluid 
surface r = 1,  separated by the interval h = Zn:(Q-  l)-'. Here, 6, = -n: and 6Q = n:. 
The dependent variables x(1,O) and y( 1 , O )  evaluated a t  the mesh points Or,  k = 1,2,  
..., Q are written as x,  and y,, respectively, and their derivatives xo(l,Ok) and 

yo( 1,6,) are denoted as x i  and yi, with similar notation for higher derivatives. 
The Fourier series (3.1) is truncated after the Nth-order term, so that its real and 
imaginary parts give approximately 

I N 

xk = - O k -  C A, sin(jO,), 
j-1 

N 

Y k  = A0 + Aj cos ( j8k) .  
j=1 

The series (3.2) are differentiated exactly to give similar series expressions for x;, 
Y i ,  4, y;. 

The elastic bending moment M ( 8 )  is also computed approximately as a truncated - 
Fourier series of the form 

N 

M(6,) = M ,  + x M ,  cos (j6J. 
j=1 

The coefficients M,, MI, M,, . . . are given by the usual 

(3.3) 

Euler formulae 

M ,  = M(O)d6, 
2.n --K 

M - 1 M ( 8 )  cosjOd6, j = 1,  ..., N. 
j - 7 t  --x 

(3.4) 

Since the integrands in (3.4) are periodic functions of 6,  the coefficients M,, M,, ..., 
M ,  may be evaluated to exponentially high-order accuracy using the trapezoidal 
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rule. Defining trapezoidal-rule weights w1 = wQ = ih, wk = h, k = 2,  ..., Q -  1 and 
using (2.10), we have 

where the constant yi has the value 2 whenj  = 0 and 1 otherwise. Equation (3.3) is 
now differentiated to yield similar series for M’(c9,) and M“(c9,). 

The Fourier series for the pressure P(8) at the free surface is written approximately 
as 

N 

P ( & ) = P , + c ~ C O S ( j & ) ,  k =  1>2, . . .3Q> (3.6) 
j=1 

and the Fourier coefficients Po, PI, ..., PN are obtained from (2.9) using the Euler 
formulae and the composite trapezoidal rule with weights wl, ..., wg,  as above. This 
gives 

dM W k  [X;M”(@k) -M’(Bk) X i ]  COS (j#,) 5 = dMHdi-- , j = 0 , l  ,...) N ,  (3.7) 
k = l  x;3 

in which the constant Sj is either 1 when j = 0 or 0 for j $; 0, and yi has the same 
values as in (3.5). 

A damped Newton-Raphson method is now used to solve (2.7) and (2.8) for the 
vector u = [ p ,  A,, A,,  . . . , ANIT of the N + 2 unknowns. We seek to solve an algebraic 
system of equations of the form 

where E = [E,,E,, ..., EN,,IT is an error vector of length N + 2 ,  the individual 
elements of which are obtained as the discrete Fourier transforms of (2.7) and (2.8). 
For the first component of the error vector, (2.7) and (3.2) yield 

E(u) = 0, (3.8) 

(3.9a) 

and the notation [ ; (N- l ) ]  denotes the integer part of i (N-1 ) .  The remaining 
components are obtained from (2.8) in the form 

where the constants yi,Si and weights wk are as before. 

provided by the linearized solution 
To begin the computation, an initial guess is made for the vector u ;  this is usually 

1 puo = l + d M K ,  

Aho) = 0, 

A!’) = a, 

A!,’ 3 = 0, j = 2,  ..., N ,  

(3.10) 

given in Paper 1. The components of the error vector E are then obtained from (3.9), 
using (3.2)-(3.7), and a correction vector d is next computed by Newton’s method, 
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FIGURE 1. Wave-speed parameter as a function of a for H = 0.005, K = 0.4, d, = 0.9. 

as the solution to the matrix equation 

J(u)  A = -E(u), (3.11) 

in which J(u)  is the Jacobian matrix of derivatives of the components of the error 
vector E. Finally, a new estimate u of the solution is obtained by adding the vector 
A to the previous estimate u.  If the new vector u is a worse approximation to the 
solution of (3.8) than before, in the sense that the norm (El?): is increased rather 
than decreased, then the correction step A is halved and a new estimate u formed. 
This simple modification to Newton’s method is of great importance in obtaining 
large-amplitude solutions to the present problem. The derivatives in the Jacobian 
matrix J in (3.11) a.re evaluated using forward differences. 

4. Presentation of results 
Solutions for pure gravity waves may be obtained by setting K = 0 in our 

numerical scheme, and provide a check on the correctness of our method. Computed 
values of the wave-speed parameter ,u are in excellent agreement with the results 
tabulated by Cokelet (1977), and with those presented in Paper 1.  When N = 101, 
waves up to 95 YO of the theoretical maximum height may be computed, after which 
Newton’s method does not yield further solutions owing to the increasingly slow 
convergence of the Fourier series (3.2) with increasing wave amplitude a. At every 
value of the flexural rigidity K ,  internal checks on the accuracy of the solutions are 
performed, such as comparing results obtained with different numbers of Fourier 
coefficients N and grid-points Q ,  and monitoring the accuracy to which (2.7) and (2.8) 
are satisfied. 

In  figure 1 we present the difference between the wave-speed parameter ,LA and the 
linearized value ,ao (given in (3.10)) as a function of the half-wave height a, for the 
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1 

FIGURE 2. Wave profiles for H = 0.005, K = 0.4, d, = 0.9 at the two values of half-wave height 
a = 1 (---) and a = 1.7 (-). The scale is the same on the vertical and horizontal axes. 

case H = 0.005, K = 0.4, d, = 0.9. A similar graph was presented in Paper 1, but 
there it was found that the series solution predicted a singularity in the wave speed 
a t  about a = 0.126. Our numerical results are in good agreement with those obtained 
by the series method for a 5 0.12, but do not detect any such singular behaviour at 
these small values of a. In  Paper 1, the singularity predicted by the series method to 
occur a t  about a = 0.126 was presumed to correspond to the failure of the 
mathematical model, perhaps due to crack formation in the floating elastic sheet. 
This interpretation was based upon the view, sometimes advanced in the literature 
(see, for example, Van Dyke 1974), that a singularity on the positive real axis of the 
expansion variable in a series solution indicates either that the mathematical model 
ceases to describe the physical phenomenon at this point, or that the solution 
becomes a rnultiple-valued function of the expansion variable through the formation 
of square-root-type singularities. Figure 1, however, shows that neither of these 
possibilities occurs near a = 0.126, and so the conjecture in Paper 1 that the elastic 
sheet might in practice crack a t  this value of half-wave height must be incorrect. 
Instead, it now appears that the singularity a t  a = 0.126 predicted by the series 
method indicates a narrow region of nonlinear resonance, as in the model problem 
discussed by Roberts (1981). This will be discussed more fully later. 

Figure 1 indicates that solutions may be obtained a t  extremely large values of the 
half-wave height a when K = 0.4, and it was not until the value a = 1.7 was reached 
that the Newton’s-method solution suddenly failed to continue to larger wave 
heights. The reason for the failure of Newton’s method to continue past a = 1.7 is 
presently not understood, although it is possible that the wave speed might become 
a multi-valued function of a,  as occurred in the studies of interfacial waves 
undertaken by Turner & Vanden-Broeck (1986) and Grimshaw & Pullin (1986). 

Wave profiles are shown in figure 2 for the case H = 0.005, K = 0.4, d, = 0.9 and 
the two values a = 1 and a = 1.7 of the half-wave height. The scale is the same on 
both the vertical and horizontal axes, so that the profiles in figure 2 are as would 
actually be observed. The wave shape is markedly different from that of gravity 
waves, however, since large waves ultimately develop very flat crests and rather 
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FIGURE 3. (a) Bending moment and ( b )  pressure profiles on the bottom face of the elastic sheet for 
H = 0.005, K = 0.4, d, = 0.9 at a = 1 (---) and a: = 1.7 (-). 

narrow troughs. In fact, the wave profiles in figure 2 are similar to the interfacial- 
wave shapes presented by Grimshaw & Pullin (1986), and it is perhaps possible that 
S-shaped, or ‘over-hanging ’, portions may develop in the wave profiles of the present 
problem also. 

In  keeping with Paper 1,  we show in figure 3 ( a ,  b )  the moment M and pressure P 
for the two waves in figure 2 as functions of x. As the wave amplitude a increases, 
the moment profile ultimately develops a weak local minimum a t  x = 0, and large 
negative values a t  the wave troughs x = +n. Equation (2.6) shows that the bending 
moment M is proportional to the curvature of the centreplane of the elastic sheet, and 
figure 3 ( a )  thus indicates that the curvature of the surface a t  the wave troughs is 
large. In  practice, such large curvatures could result in cracking of the elastic sheet 
near these points. The pressure profiles in figure 3 ( b )  likewise show large negative 
values in these regions, and an additional interval of small negative pressures near 
x = 0. For the wave obtained with ct = 1.7, sharp pressure maxima have developed 
near the points x = A2.35. 

Figure 4 shows the difference between the wave-speed parameter ,u and the 



Waves beneath an elastic sheet. Part 2 

/- 

I 

- I  

499 

--- 

I I I. 

1 

- 

0.8 

0.6 

P -PO 

0.4 

0.4 0.8 1.2 

a 

FIGURE 4. Wave-speed parameter as a function of a for H = 0.005, K = 0.05, d, = 0.9. 

Y I  

t 

-2  t 
FIGURE 5 .  Wave profiles for H = 0.005, K = 0.05, d, = 0.9 a t  the two values of half-wave height 

a = 0.5 (---) and a = 1(-). 

linearized value p,, in (3.10) as a function of half-wave height a, for the case 
H = 0.005, K = 0.05, d ,  = 0.9. The series method of Paper 1 again predicted a 
singularity in wave speed a t  about a = 0.107, but no evidence of this is to be found 
in figure 4, so that the singularity found by the series method is most likely a point 
of resonance between different nonlinear solution branches. As indicated in figure 4, 
solutions have been found for half-wave heights as large as a = 1.2; there is every 
indication that solutions for larger a could be obtained, although to do so would 
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FIGURE 6. (a) Bending moment and ( b )  pressure profiles on the bottom face of the elastic sheet for 
H = 0.005, K = 0.05, d, = 0.9 at a = 0.5 (---) and a = 1 (-). 

require excessive amounts of computer time, since for K = 0.05, the convergence of 
Newton’s method becomes very slow as a is increased. 

Two wave profiles are shown for this case ( H  = 0.005, K = 0.05, d, = 0.9) in 
figure 5, a t  the two values of half-wave height a = 0.5 and a = 1. It was proved in 
Paper 1 that the series method of solution used there would fail at the singular 
values 1 

I 

d,K = n = 2,3 ,4 ,  ... 
n(nZ+n+ 1 ) ’  

and since the value d, K = 0.045 used in figures 4 and 5 lies between the first two 
critical points & and &, a different branch of the solution is expected from that shown 
in figures 1-3 ( K  = 0.4). Indeed, an immediate qualitative difference is evident 
between the waves in figure 5 (K = 0.05) and those in figure 2 (K = 0.4), since in 
figure 5 both waves possess an extra ‘dimple ’ near the wave trough. In addition, 
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FIQURE 7 .  Wave-speed parameter as a function of a for H = 0.005, K = 0.009, d, = 0.9. 

there is actually a very weak local minimum in the wave profile for a = 1 a t  x = 0, 
although this may be too slight to be visible in figure 5. 

In  figure 6 ( a ,  b ) ,  moment and pressure profiles are shown for the two waves in 
figure 5. Both profiles show an extra local maximum to the corresponding profiles for 
K = 0.4 displayed in figure 3, as was reported previously in Paper 1. However, in 
Paper 1 it was supposed that these extra ‘dimples’ would not be seen in the wave 
profile itself; this supposition is obviously incorrect, as figure 5 makes clear, and is 
a consequence of the fact that  the series method is incapable of continuing to large 
enough amplitudes for the dimples in the wave profiles to become visible. 

Figure 7 shows the difference between the wave-speed parameter ,u and the 
linearized value po as a function of a for the case H = 0.005, K = 0.009, d, = 0.9. 
This was the most accurate of the cases discussed in Paper 1, where it was found that 
the series method unambiguously indicated a pole singularity in the wave speed at 
a = 0.100073. In  fact, the series method of Paper 1 was capable of analytically 
continuing the wave speed past this pole singularity, although the results obtained 
with a > 0.100073 were dismissed as ‘physically meaningless’, which is almost 
certainly not the case. Instead, the series method jumps from one branch of the 
solution to another at a = 0.100073, similar to its behaviour in a recent study of the 
forced Duffing equation, undertaken by Forbes (1987). 

When K = 0.009, the Newton’s-method solution converged to two different 
solution branches, portions of which are sketched in figure 7. On the upper branch, 
for which p-p,, > 0, it was found possible to compute accurate solutions at least in 
the interval 0 < a < 0.7 ; solutions for larger a could also be obtained at the expense 
of an extraordinarily large number of iterations of Newton’s method, and 
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FIGURE 8. Wave profiles for H = 0.005, K = 0.009, d, = 0.9 at the three values of half-wave height 

a = 0.1 (---), a = 0.2 (......) and a = 0.3 (-). 

consequently large amounts of computer run time. Some of these results are of 
uncertain accuracy, and have been sketched with a dashed line in figure 7. The lower 
solution branch was obtained by starting a t  a = 0.6 with the initial guess for 
Newton’s method supplied by the linearized solution (3.10)’ and then decreasing a 
incrementally, using the previous solution as a starting guess for the new value of a. 
Solutions were obtained in this way down to a = 0.25; thereafter, an ‘inverse’ 
numerical method was employed, whereby p is prescribed in advance and a 
determined as an unknown constant. This technique enabled the lower branch of 
solutions to be continued down until about a = 0.227, when the slow convergence of 
Newton’s method and mounting costs of computer time prevented solutions a t  
smaller values of a from being obtained. 

As the lower branch of solutions in figure 7 is continued to smaller a, it is observed 
that the wave-speed parameter p increases abruptly, so that the lower branch 
appears to intersect the upper branch a t  about a = 0.24 (p-po = 0.069). In  an 
attempt to determine whether this point represents a true bifurcation, we have 
monitored the determinant of the Jacobian matrix in Newton’s method whilst 
proceeding along a particular solution branch. As indicated by Chen & Saffman 
(1980), a vanishing determinant would indicate that the two branches actually 
intersected at such a point, establishing the presence of a bifurcation. 

Our results show that the determinant of the Jacobian matrix does not change sign 
nor does it appear to become zero on passing through the apparent intersection point 
of the two branches shown in figure 7 .  Evidently this point is not a simple bifurcation 
point, and there is no numerical evidence to suggest that the two different branches 
in figure 7 intersect a t  all, in spite of the fact that the values of p coincide for one 
value of a. It therefore seems likely that the two solution branches in figure 7 remain 
distinct a t  the cross-over point a x 0.24. However, the possibility of a further 
resonance in a narrow interval about this point cannot yet be dismissed, and the 
series method of Paper 1 in fact detected such a phenomenon a t  a = 0.100073. These 
observations suggest that a large number of different solution branches exists, 
although our numerical methods have so far only detected two. 

Three wave profiles are displayed in figure 8, for the case H = 0.005, K = 0.009, 
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FIGURE 9. (a) Bending moment and ( b )  pressure profiles on the bottom face of the elastic sheet for 
H = 0.005, K = 0.009, d, = 0.9 at a = 0.1 (---), a = 0.2 (......) and a = 0.3 (-). 

d, = 0.9, a t  the half-wave heights a = 0.1,0.2 and 0.3. These all belong to the upper 
solution branch in figure 7 ,  and the wave shape for a = 0.1 is graphically 
indistinguishable from that obtained by the series method in Paper 1 for the same 
value of a. As the wave amplitude is increased, additional maxima and minima 
appear in the wave profiles, and these are clearly visible in the region of the troughs, 
for the solution obtained with a = 0.3. 

Moment and pressure profiles for the three waves in figure 8 are shown in figure 
9(a, b ) .  Notice that the pressure profile for a = 0.1 in figure 9(b) does not possess the 
exaggerated minimum a t  x = 0 that was predicted by the series method in Paper 1. 
Both profiles in figure 9 possess many secondary maxima and minima. 

In  figure 10, two different solutions are presented for the case H = 0.005, 
K = 0.009, d ,  = 0.9 a t  the same value a = 0.4 of the half-wave height. The wave 
sketched with a solid line belongs to the upper branch of solutions in figure 7,  and its 
wave-speed parameter is ,u = 1.251563. The secondary wavelet near the troughs is 
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FIGURE 10. Two different solutions for H = 0.005, K = 0.009, d, = 0.9 and a = 0.4. Shown are 
a slow-wave (---) and a fast-wave (-) solution. 

now well developed, and there is also a weak local minimum a t  x = 0, although this is 
too small to be seen from figure 10. The solution sketched with a dashed line belongs 
to the portion of the lower branch of solutions in figure 7,  and its wave speed is 
p = 0.9130585. In  addition to a small ‘dimple’ near each trough, there is also a 
pronounced local minimum a t  x = 0. The difference between the highest and lowest 
points on the wave profile is much greater for the lower-branch solution in figure 10 
than for the upper-branch solution, and in practice one might expect such large slow 
waves to be unstable. 

In  Paper 1 it was demonstrated that the series-solution technique failed a t  
the singular values of flexural rigidity given in (4.1). At the first resonance value 
d,K = (with n = 2), two separate solutions were computed by means of a 
low-order perturbation expansion, showing that the singular values of K in (4.1) are 
associated with the existence of multiple solutions. This is confirmed in figure 11,  
where two distinct solutions are given for the case H = 0.005, a = 0.5, d, = 0.9 with 
d, K = A. The wave drawn with a solid line is the faster of the two, and has speed 
,u = 1.490692. It was obtained using as a starting guess for Newton’s method the 
values ,u = ,u,++a, A ,  = 0, A ,  = a, A ,  = +a, A ,  = ... = A ,  = 0 ;  these values are an 
approximation to the upper-branch solution computed in Paper 1.  This profile 
possesses a local minimum in the vicinity of the wave troughs. The other solution, 
sketched with a dashed line in figure 11, has wave speed p = 0.9567068 and was 
obtained using the linearized solution (3.10) as the starting guess for Newton’s 
method. It possesses a weak local minimum a t  x = 0. 

We conclude this exposition of the numerical results with a brief discussion of the 
effects of altering the sheet thickness H ,  hitherto maintained constant. Figure 12 is 
a plot of p-p0 against the sheet thickness H for the case a = 0.5, K = 0.4, d, = 0.9. 
The wave-speed parameter p increases almost linearly, although with an additional 
small upward inflexion, until the value H = 4.7 is reached, beyond which point 
Newton’s method suddenly fails to converge. The precise mathematical nature of the 
apparent singularity near H = 4.7 is presently not understood, in particular since the 
Fourier series are highly convergent a t  H = 4.7, although it is intuitively clear that 
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\ \  

FIGURE 11 .  Two different solutions at the singular point d,K = A, for H = 0.005, a = 0.5, 
d,_= 0.9. Shown are a slow-wave (---) and a fast-wave (-) solution. 
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FIGURE 12. Wave-speed parameter as a function of H for a = 0.5, K = 0.4, d, = 0.9. 

there must ultimately cease to be solutions for sufficiently large H in figure 12. This 
is because, as pointed out in Paper 1, the Bernoulli equation (2.8) reduces to that 
describing pure gravity waves as H --f 00, so that these are the only possible outcome 
for large H .  Since the value a = 0.5 of half-wave height assumed in figure 12 exceeds 
the maximum value u = 0.443 13 for pure gravity waves (taken from Cokelet 1977), 
then the solution branch in figure 12 must terminate at some finite H .  

Two wave profiles are shown in figure 13, for the case u = 0.5, K = 0.4, d, = 0.9. 
The dashed line indicates the shape of a wave beneath a floating elastic sheet of zero 
thickness, and the solid line represents the wave profile of the near-limiting wave for 
which H = 4.7. As H is increased, it is clear that the wave begins to develop the 
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characteristic peaked crests and broad, flat troughs associated with pure gravitj 
waves of large amplitude. 

5. Summary and discussion 
The equations of motion, derived in Paper 1, which describe the shape of two- 

dimensional waves beneath a floating elastic sheet have been solved accurately in the 
present paper using a Galerkin-type method. The prediction of Paper 1 that, for 
small wave amplitude, a different nonlinear branch of the solution is obtained in each 

0 < d ~ l ; l - l  < 14 of the intervals 

and 

appears to  be confirmed in the present paper. These different solution branches are 
characterized by different numbers of 'dimples' in the wave profile, analogous to the 
case of capillary-gravity waves investigated by Schwartz & Vanden-Broeck ( 1979), 
for example. Different numbers of subsidiary maxima and minima are also present 
in the moment and pressure profiles, and in Paper 1 it was erroneously suggested that 
these were the only distinguishing features between the various solution branches, 
since the series method of Paper 1 was not capable of continuing to large enough 
wave height for the dimples in the wave profile itself to become visible. 

For each value of the flexural rigidity investigated, waves of very large height were 
computed. This disproves the conjecture in Paper 1 that the waves should be limited 
to rather modest heights by the presence of a singularity predicted by the series 
method ; instead, this singularity in the series method is now believed to correspond 
to a narrow region of nonlinear resonance, at which the series method jumps from one 
solution branch to another. 

Multiple solutions have been computed for certain values of the flexural rigidity K ,  
confirming the predictions of Paper 1. Other solution branches could presumably also 
be obtained at  the same values of K using the present numerical scheme, simply by 
altering the initial guess supplied to Newton's method in some appropriate manner. 

n(n2+n+1)  <d;'K-l < ( n + 1 ) ( n 2 + 3 n + 3 ) ,  n = 2 , 3 , 4 ,  ... 

FIQURE 13. Wave profiles for a = 0.5, K = 0.4, d, = 0.9 at the two values of sheet thickness 
H = 0 (---) and H = 4.7 (-). 
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The stability of these branches has not been investigated, however, and it is possible 
that some of the solutions presented here may be unstable. To the extent that our 
numerical scheme does not solve directly for the wave profile, but instead determines 
the coefficients of its Fourier expansion, the method should be capable of computing 
unstable solutions. 

With K = 0.4, extremely large waves have been computed, for which the wave 
height exceeds half the wavelength. There is apparently a maximum wave height 
beyond which solutions cannot be obtained, however, and it may be of mathematical 
interest to examine the nature of the limiting behaviour near this maximum height. 
It is possible that the wave speed may become a double-valued function of half-wave 
height, with S-shaped portions appearing in the wave profile, as occurs in the study 
of interfacial gravity waves reported by Turner & Vanden-Broeck (1986) and 
Grimshaw & Pullin (1986), for example. From a practical point of view, however, 
these considerations are possibly of limited interest, since it is surely to be expected 
that our simple description of the behaviour of the elastic sheet, although nonlinear, 
will not adequately model the sheet response to the extreme deflections encountered 
in this study. More complete descriptions of the sheet behaviour are presently under 
investigation. 

As indicated in the introduction, the initial motivation for studying this problem 
was to provide a description of waves beneath a floating ice sheet. The present model 
undoubtedly does this for waves of sufficiently small amplitude, although the 
extremely large-amplitude solutions encountered here are not expected to be 
relevant to the behaviour of ice. Instead, the large curvatures and pressures 
developed near the wave troughs would cause cracking to occur, resulting in the 
formation of floating blocks of ice. 

I am grateful to a referee for valuable remarks concerning the results presented in 
figure 7 .  

R E F E R E N C E S  

CHEN, B. & SAFFMAN, P. G. 1980 Numerical evidence for the existence of new types of gravity 

COKELET, E. D. 1977 Steep gravity waves in water of arbitrary uniform depth. Phil. Trans.  R.  SOC. 

FORBES, L. K.  1986 Surface waves of large amplitude beneath an elastic sheet. Part 1 .  High-order 

FORBES, L. K. 1987 Periodic solutions of high accuracy to the forced Duffing equation: 

GRIMSHAW, R. H. J. t PULLIN, D. I. 1986 Extreme interfacial waves. Phys. Fluids 29,2802-2807. 
HOGAN, S. J. 1980 Some effects of surface tension on steep water waves. Part 2. J .  Fluid Mech. 

96, 417445. 
HOGAN, S. J. 1981 Some effects of surface tension on steep water waves. Part 3. J .  Fluid Mech. 

110, 381410. 
HOLYER, J. Y. 1979 Large amplitude progressive interfacial waves. J .  Fluid Mech. 93, 433448. 
PULLIN, D. I. t GRIMSHAW, R. H. J.  1983 Nonlinear interfacial progressive waves near a 

RIENECKER, M. M. t FENTON, J. D. 1981 A Fourier approximation method for steady water 

ROBERTS, A. J. 1981 The behaviour of harmonic resonant steady solutions to a model differential 

ROBERTS, A. J. 1983 Highly nonlinear short-crested water waves. J .  Fluid Mech. 135, 301-321. 

waves of permanent form on deep water. Stud. Appl.  Maths 62, 1-21. 

Lond. A 286, 183-230. 

series solution. J .  Fluid Mech. 169, 409-428. 

Perturbation series in the forcing amplitude. J .  Austral. Math. SOC. B 29, 21-38. 

boundary in a Boussinesq fluid. Phys. Fluids 26, 897-905. 

waves. J .  Fluid Mech. 104, 119-137. 

equation. Q. J .  Mech. Appl .  Maths 34, 287-310. 

17 FLM 188 



508 L. K .  Forbes 

SCHWARTZ, L. W. 1974 Computer extension and analytic continuation of Stokes’ expansion for 

SCHWARTZ, L. W. & FENTON, J. D. 1982 Strongly nonlinear waves. A n n .  Rev. Fluid Mech. 14, 

SCHWARTZ, L. W. & VANDEN-BROECK, J.-M. 1979 Numerical solution of the exact equations for 

STOKES, G. G. 1880 MathematicaE and Physical Papers, vol. 1. Cambridge University Press. 
TURNER, R. E. L. & VANDEN-BROECK, J.-M. 1986 The limiting configuration of interfacial gravity 

VAN DYKE, M. D. 1974 Analysis and improvement of perturbation series. &. J .  Mech. Appl. Maths 

WILTON, J. R. 1915 On ripples. Phil. Mag. 29, 688-700. 

gravity waves. J .  Fluid Mech. 62, 553-578. 

39-60. 

capillary-gravity waves. J .  Fluid Mech. 95, 119-139. 

waves. Phys. Fluids 29, 372-375. 

27, 423-450. 




